Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: MU1138). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

Clegg, W. (1981). Acta Cryst. A37, 22-28.
Ellames, G. J., Hewkin, C. T., Jackson, R. F. W., Smith, D. I. \& Standen, S. P. (1989). Tetrahedron Lett. 30, 3471-3472.
Engelhardt, L. M., Healy, P. C., Kildea, J. D. \& White, A. H. (1989). Aust. J. Chem. 42, 185-199.
Hoberg, H., Guhl, D. \& Betz, P. (1990). J. Organomet. Chem. 387, 233-246.
Munakata, M., Kitagawa, S., Simono, H., Emori, T. \& Masuda, H. (1987). J. Chem. Soc. Chem. Commun. pp. 1798-1799.

Sheldrick, G. M. (1990). SHELXTL/PC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ, of Göttingen, Germany.
Stoe \& Cie (1988). DIF4. Diffractometer Control Program. Version 7.04. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 527-529

# 2,2-Dimethyl-5-(2-methyl-4-phenyl-3,4-diaza-2-butenylidene)-1,3-dioxane-4,6-dione 

Alexander J. Blake and Hamish McNab<br>Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 13 June 1994; accepted 15 July 1994)


#### Abstract

The molecular conformation of the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$, is described in terms of three planar sections which are mutually twisted. The main intermolecular contacts are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds where the $\mathrm{O} \cdots \mathrm{N}$ separation is $3.063(3) \mathrm{A}$.


## Comment

The study of the structure of the title compound, (1), was undertaken to determine whether there were conformational reasons for its ready cyclization to give a 3-oxopyridazinecarboxylic acid upon thermolysis in solution, while the corresponding unsubstituted compound (2) is recovered unchanged under similar conditions (McNab \& Stobie, 1982). The structure of (1) is also related to that of the propenylidene Meldrum's acid derivative (3), which we have described recently (Blake, McNab \& Monahan, 1991).

(1) $R=\mathrm{Me}$
(2) $R=\mathrm{H}$

The conjugated system from C5 to N10 in (1) is exclusively trans, as found for (3), and so the cyclization reaction cannot be explained by a groundstate proximity of N10 and C4.

A feature of the structure of (3) is that electron delocalization occurs along the propenyl chain such that the lengths of all the $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ bonds are comparable [1.385 (8)-1.409 (8) $\AA$ ]. In the case of (1), the system is much more localized $[\mathrm{C}=\mathrm{C} 1.355$ (3), $\mathrm{C}-$ C 1.439 (3) Å], partly due to poorer electron donation from the hydrazone N atom N10 compared with the terminal amino group in (3), and also partly due to the non-planarity of the system (see below). This reduced electron donation is also reflected in the lengths of the C4-C5 and C5-C6 bonds [both 1.469 (3) Å], which are substantially longer than the corresponding values for (3) $[1.449$ (8), 1.417 (8) $\AA$ ].

The presence of the $C 8 M$ methyl substituent in (1) has a dramatic effect on the angles subtended at C8 and C5. Non-bonded contacts between the C $8 M$ methyl group and O 4 lead to widening of the $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 M$ and $\mathrm{C} 8 \mathrm{M}-\mathrm{C} 8-\mathrm{N} 9$ angles to 125.7 (2) and 123.7 (2) ${ }^{\circ}$, respectively, with a concomitant reduction in the C7$\mathrm{C} 8-\mathrm{N} 9$ angle to $110.5(2)^{\circ}$. The $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7$ angle is widened to $126.0(2)^{\circ}$, compared with an angle of $120.9(5)^{\circ}$ in (3). This distortion is almost entirely at the expense of the endocyclic $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ angle [116.5 (2) ${ }^{\circ}$, compared with $121.7(5)^{\circ}$ in (3)]. A similar trend at C5 has been noted for the corresponding angles in the dimethylaminomethylene Meldrum's acid, which has analogous steric constraints (Blake, McNab \& Monahan, 1991). In (1), the two exocyclic N-C-C angles involving the phenyl group differ significantly, possibly because of repulsion between the ortho H 6 P atom and the lone pair on N9.

The molecular conformation of (1) can be described in terms of three planar sections: the phenyl ring, the five-atom chain C5-C7-C8-N9-N10 with its C8M substituent, and four atoms ( $\mathrm{O} 1, \mathrm{O} 3, \mathrm{C} 4$ and C 6 ) of the Meldrum's acid ring. The angle between the normals to the phenyl ring and the chain is $10.2(2)^{\circ}$ and the angle between the normals to the chain and the plane of the Meldrum's acid ring is $20.5(2)^{\circ}$. In contrast, there is a much greater degree of coplanarity between the chain and the Meldrum's acid ring in (3). The mean deviation from the plane of the chain is $0.058 \AA$, while the four atoms defining the Meldrum's acid plane
are essentially coplanar (mean deviation $0.0013 \AA$ ). Within the Meldrum's acid ring, C 5 is displaced in one direction from the plane by 0.276 (3) $\AA$, while O 4 and O 6 are displaced in the opposite direction by 0.330 (3) and 0.244 (3) $\AA$, respectively; the greater deviation of O 4 may be explained by the proximity of C8M. These distortions may be sufficient to lower the activation energy for bond rotation relative to that in the unsubstituted compound (2) so that thermal cyclization may take place.
The principal intermolecular contacts are hydrogen bonds between $\mathrm{N} 10-\mathrm{H} 10$ and O 6 at $(x, 1+y, z)$, which link the molecules to form chains parallel to the $b$ axis.


Fig. 1. A view of the molecule with the atom-numbering scheme. Displacement ellipsoids enclose $50 \%$ probability surfaces.

## Experimental

The title compound was obtained by the reaction of $\mathrm{PhNHN}=\mathrm{C}(\mathrm{Me}) \mathrm{CHO}$ with 2,2-dimethyl-1,3-dioxane-4,6dione. Crystals were grown from ethanol (McNab \& Stobie, 1982).

## Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=288.30$
Triclinic
$P \overline{1}$
$a=7.544$ (3) $\AA$
$b=8.576$ (3) $\AA$
$c=12.014$ (7) $\AA$
$\alpha=78.01$ (3) ${ }^{\circ}$
$\beta=83.36(3)^{\circ}$
$\gamma=71.41(3)^{\circ}$
$V=719.6(6) \AA^{3}$
$Z=2$
$D_{x}=1.330 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

| Stoe Stadi-4 diffractometer | $R_{\text {int }}=0.0116$ |
| :--- | :--- |
| $\omega-2 \theta$ scans | $\theta_{\max }=22.52^{\circ}$ |
| Absorption correction: | $h=-7 \rightarrow 8$ |
| none | $k=-8 \rightarrow 9$ |
| 1858 measured reflections | $l=0 \rightarrow 12$ |
| 1847 independent reflections | 3 standard reflections |
| 1499 observed reflections | frequency: 120 min |
| $[I>2 \sigma(I)]$ | intensity decay: $2.0 \%$ |

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0397$
$w R\left(F^{2}\right)=0.1394$
$S=1.124$
1845 reflections
185 parameters

H10 was constrained to lie $1.00 \AA$ from N 10 ; other H atoms were placed in calculated positions.
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$\Delta \rho_{\text {max }}=0.216 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.200$ e $\AA^{-3}$
Extinction correction: SHELXL93 (Sheldrick, 1993)

Extinction coefficient: 0.046 (9)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)
$(\Delta / \sigma)_{\text {max }}=0.367$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

| $U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ |  |  |  |  |
| :--- | :---: | :---: | :--- | :---: |
|  | $\boldsymbol{x}$ | $y$ | $z$ | $U_{\text {eq }}$ |
| O1 | $0.2374(2)$ | $0.2956(2)$ | $0.82567(12)$ | $0.0474(5)$ |
| C2 | $0.2004(3)$ | $0.4137(2)$ | $0.7209(2)$ | $0.0408(6)$ |
| C2A | $0.2316(4)$ | $0.3119(3)$ | $0.6290(2)$ | $0.0569(7)$ |
| C2B | $0.0055(3)$ | $0.5346(3)$ | $0.7267(2)$ | $0.0554(7)$ |
| O3 | $0.3367(2)$ | $0.5016(2)$ | $0.69950(11)$ | $0.0439(4)$ |
| C4 | $0.3673(3)$ | $0.5714(2)$ | $0.7839(2)$ | $0.0400(6)$ |
| O4 | $0.4654(2)$ | $0.6617(2)$ | $0.76169(13)$ | $0.0602(5)$ |
| C5 | $0.2926(3)$ | $0.5147(2)$ | $0.8982(2)$ | $0.0355(5)$ |
| C6 | $0.2617(3)$ | $0.3502(3)$ | $0.9186(2)$ | $0.0412(6)$ |
| O6 | $0.2589(3)$ | $0.2608(2)$ | $1.01041(13)$ | $0.0615(5)$ |
| C7 | $0.2684(3)$ | $0.5915(2)$ | $0.9891(2)$ | $0.0384(5)$ |
| C8 | $0.2622(3)$ | $0.7571(2)$ | $1.0000(2)$ | $0.0364(5)$ |
| C8M | $0.2414(3)$ | $0.9034(3)$ | $0.9051(2)$ | $0.0491(6)$ |
| N9 | $0.2675(2)$ | $0.7654(2)$ | $1.10718(14)$ | $0.0381(5)$ |
| N10 | $0.2704(2)$ | $0.9075(2)$ | $1.13387(13)$ | $0.0387(5)$ |
| C1P | $0.2730(2)$ | $0.9166(2)$ | $1.24865(8)$ | $0.0354(5)$ |
| C2P | $0.3019(2)$ | $1.05723(14)$ | $1.27502(9)$ | $0.0419(6)$ |
| C3P | $0.3058(2)$ | $1.06988(15)$ | $1.38855(11)$ | $0.0490(6)$ |
| C4P | $0.2809(2)$ | $0.9418(2)$ | $1.47570(8)$ | $0.0561(7)$ |
| C5P | $0.2520(3)$ | $0.8012(2)$ | $1.44930(9)$ | $0.0610(7)$ |
| C6P | $0.2481(2)$ | $0.78853(15)$ | $1.33577(11)$ | $0.0526(6)$ |

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

| $\mathrm{O} 1-\mathrm{C} 6$ | $1.349(3)$ | $\mathrm{C} 5-\mathrm{C} 7$ | $1.355(3)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{O} 1-\mathrm{C} 2$ | $1.435(3)$ | $\mathrm{C} 5-\mathrm{C} 6$ | $1.469(3)$ |
| $\mathrm{C} 2-\mathrm{O} 3$ | $1.430(2)$ | $\mathrm{C} 6-\mathrm{O} 6$ | $1.208(3)$ |
| $\mathrm{C} 2-\mathrm{C} 2 A$ | $1.499(3)$ | $\mathrm{C} 7-\mathrm{C} 8$ | $1.439(3)$ |
| $\mathrm{C} 2-\mathrm{C} 2 B$ | $1.508(3)$ | $\mathrm{C} 8-\mathrm{N} 9$ | $1.309(3)$ |
| $\mathrm{O} 3-\mathrm{C} 4$ | $1.354(2)$ | $\mathrm{C} 8-\mathrm{C} 8 M$ | $1.490(3)$ |
| $\mathrm{C} 4-\mathrm{O} 4$ | $1.206(3)$ | $\mathrm{N} 9-\mathrm{N} 10$ | $1.330(2)$ |
| $\mathrm{C} 4-\mathrm{C} 5$ | $1.469(3)$ | $\mathrm{N} 10-\mathrm{C} 1 P$ | $1.400(2)$ |
| $\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 2$ | $118.2(2)$ | $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$ | $116.5(2)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{O} 1$ | $109.1(2)$ | $\mathrm{O} 6-\mathrm{C} 6-\mathrm{O} 1$ | $118.2(2)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 2 A$ | $107.0(2)$ | $\mathrm{O} 6-\mathrm{C} 6-\mathrm{C} 5$ | $125.5(2)$ |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 2 A$ | $105.9(2)$ | $\mathrm{O} 1-\mathrm{C} 6-\mathrm{C} 5$ | $116.2(2)$ |
| $\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 2 B$ | $110.4(2)$ | $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$ | $132.9(2)$ |
| $\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 2 B$ | $110.6(2)$ | $\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 7$ | $110.5(2)$ |
| $\mathrm{C} 2 A-\mathrm{C} 2-\mathrm{C} 2 B$ | $113.5(2)$ | $\mathrm{N} 9-\mathrm{C} 8-\mathrm{C} 8 M$ | $123.7(2)$ |
| $\mathrm{C} 4-\mathrm{O} 3-\mathrm{C} 2$ | $118.4(2)$ | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 M$ | $125.7(2)$ |
| $\mathrm{O} 4-\mathrm{C} 4-\mathrm{O} 3$ | $118.2(2)$ | $\mathrm{C} 8-\mathrm{N} 9-\mathrm{N} 10$ | $119.2(2)$ |
| $\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$ | $125.6(2)$ | $\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 1 P$ | $119.06(15)$ |
| $\mathrm{O} 3-\mathrm{C} 4-\mathrm{C} 5$ | $115.9(2)$ | $\mathrm{C} 6 P-\mathrm{C} 1 P-\mathrm{N} 10$ | $121.38(10)$ |
| $\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 4$ | $126.0(2)$ | $\mathrm{C} 2 P-\mathrm{C} 1 P-\mathrm{N} 10$ | $118.60(10)$ |
| $\mathrm{C} 7-\mathrm{C} 5-\mathrm{C} 6$ | $117.1(2)$ |  |  |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$ | $16.6(4)$ | $\mathrm{C} 8 M-\mathrm{C} 8-\mathrm{N} 9-\mathrm{N} 10$ | $-5.9(3)$ |
| $\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8$ | $-170.8(2)$ | $\mathrm{C} 8-\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 1 P$ | $179.0(2)$ |
| $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9$ | $-169.2(2)$ | $\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 1 P-\mathrm{C} 6 P$ | $-8.5(2)$ |
| $\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 8 M$ | $14.2(4)$ | $\mathrm{N} 9-\mathrm{N} 10-\mathrm{C} 1 P-\mathrm{C} 2 P$ | $171.33(13)$ |
| $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 9-\mathrm{N} 10$ | $177.4(2)$ |  |  |

The phenyl ring ( $\mathrm{C} 1 P$ to $\mathrm{C} 6 P$ ) was constrained as a regular hexagon with $\mathrm{C}-\mathrm{C}$ distances of $1.390 \AA$. Data collection and cell refinement: DIF4 (Stoe \& Cie, 1988a). Data reduction: REDU4 (Stoe \& Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1992).

We thank the SERC for funding towards the provision of a four-circle diffractometer.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, bond distances and angles involving non-H atoms and torsion angles have been deposited with the IUCr (Reference: HAl123). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

## References

Blake, A. J., McNab, H. \& Monahan, L. C. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 2003-2010.
McNab, H. \& Stobie, I. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 1845-1853.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1992). SHELXTL/PC. Version 4.3. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Univ. of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 529-530

# (2RS)-4,4-Dimethyl-2-[(1SR)-1-phenylethyl]-1-pyrrolidinol 

Gérald Bernardinelli

Laboratoire de Cristallographie, Université de Genève, 24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

Wolfgang Oppolzer and Alan C. Spivey
Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland
(Received 10 June 1994; accepted 22 August 1994)


#### Abstract

In order to determine the stereospecificity of the thermal cyclization of [(E)-2,2-dimethyl-5-phenyl-4hexenyl]hydroxylamine (1), the relative configuration of the title compound, $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$, (2), has been established by single-crystal X-ray diffraction. The pyrrolidine ring adopts an envelope conformation with the N atom out


of the ring plane. The molecules form hydrogen-bonded pairs through a centre of inversion [ $\mathrm{O} \cdots \mathrm{N} 2.808(5) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N} 160(4)^{\circ}$ ].

## Comment

The thermal cyclization of N -alkenylhydroxylamines, first reported by House and co-workers (House, Manning, Melillo, Lee, Haynes \& Wilkes, 1976; House \& Lee, 1976) and independently discovered by us (Oppolzer, Siles, Snowden, Bakker \& Petrzilka, 1979), was initially proposed to occur via a radical chain mechanism. As an alternative to the thermal conversion of $N$-alkenyl- $N$-methylhydroxylamines to cyclic $N$-oxides, a retro-Cope elimination mechanism has also been postulated (Ciganek, 1990). However, compelling proof of either mechanism has not yet been presented.

(1)

(2) $4 \mathrm{H}^{+}$transier

(3)

(4)

In order to study the alkene faciality of this process, the ( $E$ )-5,5-disubstituted 4-alkenylhydroxylamine (1) was cyclized by heating it in degassed benzene under reflux ( 18 h ) to provide the $N$-hydroxypyrrolidine (2) (m.p. 358-359 K) in $81 \%$ yield. Under analogous reaction conditions, the $Z$ isomer of (1) gave an epimer of (2) (oil, yield $81 \%$ ) without cross contamination (Oppolzer, Spivey \& Bochet, 1994).


Fig. 1. View of the $N$-hydroxypyrrolidine (2) with the atomic labelling of non-H atoms shown. Ellipsoids are shown at the $30 \%$ probability level.

